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Time-Domain Analysis of TM Scattering from
Conducting Cylinders Using a Hybrid Method
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Abstract—In this paper, the finite-element method (FEM) is
used to solve open-region problems utilizing the time-domain
differential form of Maxwell’s equations. The radiation boundary
condition for the open-region problem is enforced through the
time-domain Green’s function as used in integral-equation meth-
ods, yet keeping the sparsity of the FEM matrices. In this paper,
the proposed method is applied to the time-domain analysis of
TM scattering from conducting cylinders. At each time step,
the fields inside the discretized domain are calculated using the
FEM. The computed induced currents of earlier time steps,
together with contributions from the present time step, give the
radiation condition at the terminating surface. Numerical results
are presented to illustrate the applicability of this technique.

Index Terms—FEM method, hybrid techniques, time domain,
TM scattering.

I. INTRODUCTION

I N THIS paper, we solve the transient two-dimensional
wave equation using a combination of the finite-element

technique and the concept of the Green’s function associated
with an integral-equation approach. For the TM scattering
problem, since is the axial -component of the
electric field, the wave equation in the time domain can be
written as

(1)

Here, is the spatial domain of the problem, is in-
dependent of , and is the velocity of the wave in the
medium considered. Triangular finite elements are used to
discretize the computational domain. In the finite-element
method (FEM), the computational domain must be finite. Thus,
an artificial boundary must be introduced to terminate it, and an
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adequate radiation boundary condition should be imposed on
the fictitious boundary. In this paper, the radiation condition is
enforced in an exact way, utilizing the free-space time-domain
Green’s function arising from the integral-equation approach.
This hybrid method has been used successfully for electrostatic
[1] and frequency-domain solutions of Maxwell’s equation [2].
In this paper, we extend the methodology for the solution of
transient problems. The FEM used in this paper is node based.
The field quantities are computed at each node, as opposed to
staggered in space, as done for finite difference time domain
(FDTD) [3].

Time-domain integral equations have been used in the past
to solve for transient scattering problems. However, in some
cases, the method exhibits late time instabilities, even though
the Courant stability condition was satisfied [4]–[9]. Although
some remedies have been suggested, the late time instability is
still an open problem. An implicit scheme has been proposed
to reduce such instabilities. Namely, Barkeshliet al. [10]
have used the implicit Newmark method in the application
of the boundary integral technique to solve for transient
electromagnetic-field coupling to a metallic enclosure. Gedney
and Navsariwala [11] have used the Newmark method in
conjunction with the time-dependent vector wave equation.
They showed that this procedure leads to a stable solution
under certain values of some parameters.

In this paper, we utilize the Newmark method to solve
the transient two-dimensional TM scattering for open-region
problems utilizing the FEM and Green’s function technique.

II. FORMULATION

Consider a Gaussian pulse incident on a conducting struc-
ture, as shown in Fig. 1. The electric incident field is given
by

(2)

where is the unit vector along the-direction, and is the
width of the Gaussian pulse. is a constant and provides
the initial amplitude of the Gaussian electric field. Here,is
given by

(3)

Equation (1) is satisfied by the incident electric field,
scattered electric field , produced by the currents induced
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(a)

(b)

Fig. 1. Finite-element mesh for a body and the incident field.

on the conductor, and the total field, which is given as

(4)

Here, is the position vector with respect to the origin. The
scattered field is given by

and using the backward difference at time, it can be written
as

(5)

where is the magnetic vector potential.
Due to the causal nature of the induced surface current, the

magnetic vector potential at time instantis given by [4], [5]

(6)

where is given by and is the source position vector.
As the conductor surface is divided into a number of

subsections in the process of the finite-element discretization,

the integral over the conductor surface can be broken into finite
sums, consisting of lengths , which can be given as

(7)
Since the cylindrical structure is perfectly conducting, the

boundary condition requires the tangential component of the
total electric field to be zero on the conductor. Since, for the
TM case, the transverse electric field is identically zero, the
boundary condition reduces to

(8)

on the conductor surface. We can express the surface-current
density on the conductor in terms of the tangential magnetic
field just outside (the superscript) the conductor. Hence, (8)
leads us to

(9)

where is the unit normal on the conductor surface. The
transverse component of the magnetic field is related to
through

(10)

Now, computing the transverse magnetic fields at a time instant
, we have

(11)

Similarly, we get

(12)

Also, from (9), the induced currents on the conductor surface
at time instant can be given as

(13)

For computing the time derivatives of the magnetic fields,
we have used first-order approximations. One can employ
higher order approximation, but with added cost of memory
storage and computational complexity. Expression (13) allows
one to compute the current distribution on the conductor
surface at time instant from the earlier time steps and
normal derivative of the axial electric field at time instance

. Thus, once is computed at time instance through
the application of the FEM, a simple postprocess will give its
normal derivative and the updated current distribution.

III. FINITE-ELEMENT PROCEDURE

In this section, we will use a variational formulation to
transform the two-dimensional wave equation into a matrix
equation. The open region surrounding the body is discretized
into nonoverlapping finite elements. Since the domain of
discretization must be finite, a fictitious boundary has been
introduced to bound the computational domain only four layers
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away from the object. Triangular finite elements are chosen for
the ease of simulation of any arbitrary geometry. The meshing
around the structure need not be conformal to the body, but
the efficiency of the solution increases if we use body-fitting
meshes in the solution procedure. To find the axial electric
field for the two-dimensional solution region, we seek an
approximation for within an element and then interrelate
the fields in the various elements such that the electric field

is continuous across interelement boundaries [12], [13].
Using a polynomial approximation of over each element,
the solution for the whole region is given by

(14)

where is the number of triangular elements into which the
bounded domain is divided. We will be using linear polynomial
functions over an element for the variation for . A
semidiscrete finite-element model is assumed for discretization
purposes. The spatial approximation is considered first and the
time approximation next.

For notational convenience, we will be usinginstead of
in (8). Now, we seek a solution space

a constant on , where denotes the Hilbert space for
this problem. Multiplying (1) with and integrating over the
domain , one gets the Galerkin formulation of the problem.

for a particular element can be given as

(15)

where ’s are the element-shape functions, as given in [12],
and are the values of at the element nodes at each
time step. Substituting (15) into the Galerkin formulation, one
gets from element the expression

(16a)

where the coefficients of and are

(16b)

(16c)

and is the element domain.
Now, assembling all such elements in the solution region, an

ordinary differential equation for the assemblage is given by

(17a)

and, alternately,

(17b)

The matrices and are the assemblage of individual
coefficient matrices and , respectively. It is evident
that the and are time-independent matrices. We have
replaced matrices and by and , respectively,
for notational convenience. The column matrix represents

at the corresponding nodes.

IV. TIME-STEPPING PROCEDURE

Equation (17) is a system of a second-order differential
equation, which will be solved by Newmark’s method [10],
[11]. For certain values of the parameter, the Newmark method
is unconditionally stable and introduces the best truncation
error for certain specific parameters. The algorithm starts by
expanding (equivalent to matrix ) and (equivalent to
matrix at time as

(18a)

(18b)

where and are parameters that can be chosen to obtain
accuracy and stability. Typically, the values forand are 1/4
and 1/2, respectively. However, one can choose the parameters
using and .

Next we multiply (18a) and (18b) by and use (17b) to
obtain

(19a)

and

(19b)

writing (19b) for time instance and subtracting (9b) from
it and substituting from (19a), one obtains a two-
step recurrence relation for the wave equation. Now, replacing

by , by ,
and by , we can rewrite the above
equation in a compact form as

(20)

Equation (20) can be split into two parts for two types of
nodes. The first set of nodes are called free nodes, on which
the electric field needs to be solved for, and the second set
are called fixed nodes, on which are known. If all
the free nodes are numbered first and the fixed nodes last, we
can rewrite (20) as

(21)

where subscripts and refer to free and fixed nodes,
respectively. The superscript for matrices denotes the values at
a particular time instant. As evident, the matrices, , and

do not change at every time step. This equation similarly
can be written in terms of the unknown vector at time
instant in terms of previous time instances and .

To solve for the field quantities at time instant , we
will replace the values of and at time instants
and either from the field values at previous time steps,
boundary condition on the body, or radiation condition on
the terminating surface. Suppose we know the field sources
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within the mesh. These sources are the induced currents on
the conductor surfaces. These sources produce a field in the
free space, and the scattered field at the terminating surface
can be evaluated at time using (7) and (13). Hence, the
magnetic vector potential at time can be written as

(22)

Equation (21) needs to be solved for computing the free-
node values at time instant . However, to start the two-step
recurrence relation, we need to define the initial conditions for
the free and fixed nodes. We assume that the Gaussian incident
pulse is switched on at for all spaces surrounding the
body, and the field values for the nodes for previous times are
assumed to be identically zero before . Hence, we can
use (21) to compute for the free nodes at time . Similarly,
the values of the nodes for can be found by using the
same equation. Due to the causal nature of the time-domain
problem, there has to be a finite amount of time that should
elapse (namely, ) before we can compute the effect of the
induced current on the terminating surface.

The proposed method can be regarded as a hybrid of
differential- and integral-equation techniques, because a finite-
element approach is applied for the electric field within the
domain, and a boundary condition expressed in terms of an
integral (containing the unknown source distribution under the
integral) is formulated for the terminating surface, which is
given by the Green’s function.

V. NUMERICAL RESULTS

A. Square Cylinder

Let us consider the case of a square cylinder of side 1.0 m,
illuminated by a Gaussian pulse of unit amplitude .
The incident wave is traveling along the negative-axis, i.e.,

. We have used four layers of finite elements from the
surface of the body. In this example, the fictitious surface
is only 0.2 m away from the body. The terminating surface
comprises of 80 nodes, whereas 48 fixed nodes form the
conductor surface. The inner layer between the conductor and
terminating surface consists of 192 free nodes. For the total
field formulation, the tangential electric field on the conductor
is zero.

The pulsewidth of the Gaussian pulse is taken to be
. The delay of the pulse is given in terms of

distance as 3.0 m m . This means that the Gaussian
pulse will reach its maximum at the origin at s. The
time step for this example is chosen to be , where
is the velocity of the wave in free space. After turning on the
Gaussian pulse at , we compute the fields for the free
nodes and those on the terminating surface using (21). As the
fields are known for that particular instant, the induced surface
currents may be computed through (13) for that instant. Hence,
the radiation condition on the terminating surface is applied

Fig. 2. Induced current on the square conductor at (0.5, 0.0). Outer bound-
ary—0.2 m away.

through the Green’s function integral. Now, the scattered field
on the terminating surface is computed through (5). These
values are replaced in (21) and the time-stepping procedure
continues to compute fields for the next time step. In our
analysis, to get integration accuracy and stability, we have
used values of 0.25 and 0.5 forand , respectively.

The induced surface-current distribution on the particular
segment of the body is calculated as a postprocess from the
computed longitudinal electric-field component following (12).
The induced surface current on the conductor for a point on the

-axis (0.5, 0.0) is plotted in Fig. 2, with respect to , and is
marked by finite-element time domain (FETD). As the peak of
the incident pulse arrives, the front face of the square cylinder
at s. the induced surface current is maximum during that
time. With the progression of time, the incident pulse moves
toward the back of the conductor; hence, the induced current at
the middle of the front face decreases. After the pulse crosses
it completely, the current starts decaying slowly.

The result from this method is compared with the Fourier-
transformed frequency-domain method-of-moments (MOM)
results [14]. To produce these other results, we have used 48
subsections to calculate induced current on the conductor with
the incident pulse being Gaussian, but frequency transformed.
The pulse basis functions and point-matching testing procedure
are used to evaluate the current on the conductor. We have
chosen 256 equally spaced frequency points from zero to 0.5
GHz to produce the frequency-domain currents. These values
are inverse discrete Fourier transformed (IDFT) to get time-
domain results. This is marked as IDFT in Fig. 2. As can be
seen from Fig. 2, the two results agree well.

In this example, we have employed total-field formulation.
The total electric field on a node residing on the terminating
surface is shown in Fig. 3, with respect to . This node lies
on the -axis, but just opposite to a node at the middle of the
conductor. We can see that the pulse passes through this point
and reaches its maximum around s. However, the reflected
pulse from the front face of the conductor, which is negative
of the incident pulse, slowly arrives at the terminating surface.
The negative pulse reaches its peak around s.

Now, let us see how do the induced current on the surface
of the conductor behaves in late time. Here, we have computed
the induced current at the middle of the front face of the
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Fig. 3. Total electric field on the terminating surface at a point (0.7, 0.0).

Fig. 4. Induced current on the square conductor at (0.5, 0.0). Outer bound-
ary—0.2 m away.

conductor, illuminated by a Gaussian pulse. As we can see
from Fig. 4, the induced current at late times does not show
any instability or any kind of oscillations. Even though we can
observe small ripples, they never grow beyond some values
and die down slowly as the solution procedure progresses later.

B. Circular Cylinder

Let us consider the case of a circular cylinder of diameter
1.0 m. A four-layer finite-element mesh has been used for
this problem. In this example, the terminating surface is 0.2 m
away from the conductor surface. There are 88 fixed nodes, 44
of them are on the conductor surface and the other 44 are on
the outside boundary or the terminating surface. Another 132
free nodes resides between the conductor and the terminating
surface. They are coefficients of the unknown vector of the
FEM system.

The incident field is a Gaussian pulse with
and m. The wave is of unit amplitude and
is coming from the positive -direction. The coordinate axis
is centered at the center of the cylinder. In this case, we have
also used the total-field formulation. Hence, the time-stepping
procedure starts by assuming on the outside boundary and
zero field on the conductor surface for all times. We switch on
the incident field at time all over the computational
space. Equation (21) is solved at every time step for the
free nodes to compute the electric field at those nodes. With
these known values of the field in the computational domain,

Fig. 5. Induced current on the circular conductor at (0.5, 0.0). Outer bound-
ary—0.2 m away.

Fig. 6. Total electric field on the terminating surface at a point (0.7, 0.0).

we compute the normal derivative of the axial electric field
for that time instant on the conductor. From it, the current
distribution on a particular segment of the body is calculated
through (13). Now, the scattered electric field is computed
at the terminating surface at that instant using (5) and the
known induced current on the conductor. After replacing the
total electric field for the nodes at the terminating surface, we
employ the recurrence relation to find the electric fields for the
free nodes and compute the induced current distribution on the
conductor for the next time step. In this context, we should
mention that for an initial few time steps, the total electric field
on the terminating surface is essentially the incident field, as
the induced currents take finite time to travel from the source
point to the field point to produce the scattered field.

The induced surface current on a node residing on the-
axis is plotted in Fig. 5, with respect to time. In this example,
we have chosen a time step of s. As we can observe,
the induced surface current reaches a maximum near about
2.51 ( ns) as the front face of the cylin-
der is getting illuminated by the peak of the Gaussian pulse.
The results, marked as FETD, are compared with the inverse
discrete Fourier-transformed frequency-domain MOM results
marked as IDFT. We have used 256 equally spaced frequency
points from zero to 0.5 GHz to produce the time response. As
before, we have used pulse basis and point-matching testing
procedure for frequency-domain results. For the MOM, 40
subsections are chosen on the conducting surfaces.



1476 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 46, NO. 10, OCTOBER 1998

Fig. 7. Induced current on the half cylinder at (0.5, 0.0). Outer bound-
ary—0.2 m away.

Fig. 8. Total electric field on the terminating surface at a point (0.7, 0.0).

The total electric field for a node residing on the terminating
surface has been plotted in Fig. 6. We can clearly observe that
the incident wave passes through the node and, after reflection
from the conducting surface, reaches its negative maximum
around 3 before coming back to zero.

C. Half Cylinder

As a final example, consider the scattering from a half-
cylinder of diameter 1.0 m. We have employed four layers of
finite elements to discretize the space between the fictitious
surface and scatterer. The terminating surface is conformal
to the body and is only 0.2 m away from the surface of
the conductor. The incident field in this case is coming from

. Again, we have used the total field formulation for
this problem. Electric-field values are found out for 180 free
nodes at every time step. The tangential electric field on the
scatterer, formed by 50 fixed nodes, is zero for the total field
formulation. As before, the time-stepping procedure starts by
assuming on the outside boundary, which is comprised of
60 fixed nodes. The finite-element matrix of (21) is solved for
the unknown free nodes. The normal derivative of the electric
field is computed, which gives the current distribution over a
particular segment at a time instant through (13). With these
known currents, at every time step the radiation condition on
the outside boundary is employed through Green’s-function
integral equation (5). We have used the same width and delay

of the Gaussian pulse as employed in previous examples. The
time step chosen is .

The induced surface current for a node residing on the-
axis with time progression is plotted in Fig. 7, and is marked
as FETD. As expected, the induced current reaches its peak
when the peak of the incident wave hits the particular node. For
the MOM, we have used inverse discrete Fourier-transformed
frequency-domain MOM results to compare the result from
this method. We have used 256 equally spaced frequency
samples to get the inverse transform. 52 subsections are chosen
to calculate induced current using the MOM. As before, pulse
basis functions and point-matching testing procedure are used
to evaluate the current on the conductor. This results is marked
as IDFT in Fig. 7. The total electric field on a node residing
on the terminating surface is plotted in Fig. 8, and it decays
to zero.

It has been our experience that placing the boundary too
close to the body or keeping it too far away introduces different
kinds of problems. While placing it too close, we observed
small ripples in the late time solution even through they do not
produce any kind of instability. While keeping it very far way
from the body, and using very few layers of finite elements
between the body and transmitting surface, we introduce errors
in the computation of the normal derivative of the electric
field. This may produce an erroneous induced current at every
time step, which in turn computes an incorrect scattered fields
at the terminating surface and, hence, inappropriate radiation
condition for the surface.

VI. CONCLUSION

A hybrid method is presented for the solution of the wave
equation in two dimensions for open-region TM scattering
problems using time-domain analysis. The results are in good
agreement with the IDFT solution of the MOM (transformed to
time domain) from frequency domain. The implicit integration
scheme of the Newmark method makes the finite-element
matrix equation to be unconditionally stable systems for some
particulars values of and . This paper provides a method for
using finite-element techniques for solving transient problems
in open regions.
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