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Abstract-In this work, we utilize the finite element technique
to open region problems in conjunction with the truncation condi-
tion based on the measured equation of invariance (MEI) concept.
The major advantage of the present scheme is a significant
reduction in the number of unknowns while retaining the sparsity
of the generating matrix. ~pical numerical results are presented
for the solution of Laplace’s equation to illustrate the accuracy
of the technique.

I. INTRODUCTION

IN THIS paper, the finite element (FE) technique [1] in con-
junction with the measured equation of invariance (MEI)

[2] has been used to analyze Laplace’s equation for two-
dimensional electrostatic problems involving open regions,
i.e.

x, g e [0, 03]. (1)

The principal advantage of the “MEI” boundary condition is
that it allows the truncation of the grid space very close to the
body while retaining the accuracyladvantages of conventional
difference methods.

We may mention here that the application of MEI to
electrostatics has been previously discussed [3]. However, in
this paper we provide a more efficient approach. The essential
differences are as follows:

1)

2)

3)

The FE grid is truncated two layers from the body in
all cases.
Only three neighboring nodes are used for computing
weighting coefficients using MEI method,
For two-body problem, a single “umbilical chord” is
used.

The organization of the paper is as follows: In the next sec-
tion, we describe our grid termination technique. In Section III,
some typical numerical examples are provided for comparison
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purposes. Since the FE method is well-known, the description
of the method is not provided in this paper.

II. TERMINATIONOF FE GRID USING MEI METHOD

The MEI method presented in [2] utilizes a six point
difference equation relating the nodes on the boundary to the
interior nodes, by

~ P,V, = O (Here M = 6). (2)
j=l

For a boundary node, the adjacent five points were chosen as
shown in Fig. 1. It has been assumed that a difference equation
like [2] actually simulates an essentially numerical absorbing
boundary condition. In this case, we set PI = 1 without
any loss of generality [2]. The other values of ,63 are found
by assuming five different linearly independent fixed charge
distributions [e.g., 1, COS(Z), sin(z), COS(2Z), sin(2x)] on the
structure, Based on these charge distributions, the potential at
all the boundary nodes and at any interior layer adjacent to
the boundary layer may be computed utilizing the free space
Green’s function. Thus, for two-dimensional static regions, we
get

v(p) =
/

qs(P’) in k – P’I~c,
c 27reo

(3)

where c is the perimeter of the object, and q. (p’) is the
assumed charge density on the contour. So once the five
potentials at the same points (V2 – V6 of Fig. 1) are known,
/3 = 2 to 6 can be solved for by solving a 5 x 5 matrix
equation. These values of /33 are sufficient for relating the
boundary node to its neighbors. Note that in this scheme, the
sparsity of the matrix is still maintained since only six points
are used [2].

In this work, M has been chosen as 4. Since a finite differ-
ence solution with MEI uses only four nodes (three boundary
nodes and one interior node), it is felt that same number is
sufficient for the FE/NIEI solution also. Therefore for node VI,

of Fig. 1, we choose v2, V4, and V(j to enforce the absorbing
boundary condition, This is accomplished by choosing three
independent charge distributions given by q:(1) = 1.0, q:(l)
= sin (27ri/L)j and q;(l) = cos (27rl/L) where L is the
total circumferential length of the object, 1 is the parameter
measured along the contour of the two-dimensional body and
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Fig. 1. Boundary node number 1 and nearest neighbors.
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Fig. 2. The charge distribution on an infinite PEC bent circular strip raised
to a 1O-Vpotential as predicted by FIYMEI and MoM. The bent strip has a
radhrs of 0.4 m and an arc length of 0.56T.
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Fig. 5. The charge distribution on two infinite PEC strips 0.1 m wide and
separated by 0.1 m as predicted by FE/MEI and MoM. One strip is raised to
a 1O-V potential while the other is held to a O-V potential.

to obtain more accurate results by increasing the number of
layers, we do not recommend this procedure since it results
in a large number of unknowns and thus inefficient. In fact,
our suggestion is to increase the grid density while keeping
two layers only, which will increase the number of unknowns
only marginally while providing greater object resolution. We
think this is an important point to note while using the FE/MEI
method.
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Fig. 3. The charge distribution on an infinite PEC square cylinder 0.1 m to
a side and raised to 10 V potential as predicted by FE/MEI and MoM.

q.(1) is the surface charge density. By substituting these charge
distributions in (3), one can determine numerical values for
the potentials at each of the node points at the two outermost
layers. Substituting these values in (2) with M = 4 one solves
for the three different unknowns (/3j ‘s) associated with each

of the outermost nodes.
Further, in this work, we observed that only two layers are

sufficient to obtain accurate results. Although it is possible

III. NUMERICAL RESULTS

In this section, the charge distribution for a bent circular
strip, a rectangular cylinder, a circular cylinder, and two
straight strips are presented in Figs. 2–5, respectively. For all
cases presented, the results are compared with the method of
moments (MoM) [4] solution for accuracy purposes. Further,
the grid scheme used for the FIYMEI and MoM solution is
presented in the inset of each figure. It may be noted that
in each case the FE/MEI results compare favorably with the
MoM solution. The small amount of discrepancy in each figure
may be attributed to the fact that for the FE/MEI solution
the computed charge distribution is a half-cell away from the
actual conducting surface.
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IV. CONCLUSION

The FWMEI is presented for solution of the Laplace’s [1]
Equation in two dimensions for open region problems. It is
evident that, for these examples presented, only two layers [2]

beyond the body boundary is sufficient to obtain reasonably

accurate solution, Further, the “umbilical” technique may be [3]

used to link separated bodies thus providing an efficient
FE/MEI solution for the multiple body problem. [4]
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