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Abstract— One of the problems of the finite element and the
finite difference method is that as the dimension of the problem
increases, the condition number of the system matrix increases
as @(l/hz) (of the order of hz, where h is the subsection
length). Through the use of a suitable basis function tailored for
rectangular regions, it is shown that the growth of the condition
number can be checked while still retaining the sparsity of the
system matrix. This is achieved through a proper choice of entire
domain basis functions. Numerical examples have been presented
for efficient solution of waveguide problems with rectangular
regions utilizing this approach.

I. INTRODUCTION

T HE finite difference [1] and the finite element method
[2] have been developed over the last few years in the

microwave area for efficient solution of the differential form
of Maxwell’s equations. Researchers have primarily focused
their attention on development of basis functions for treating
boundaries with edges and open region problems. spurious-
free solutions of eigenvalue problems, and efficient solution
of sparse matrix equations.

However. one of the problems with the finite difference and

finite element method lies in the solution of a large matrix

equation (either a direct solution with several right-hand sides,
or an eigenvalue problem). The problem here is that as the
number of basis functions increases (and hence the dimension
and size of the matrix), the condition number of the matrix also
increases. The increase of the condition number of the matrix
creates various types of solution problems. For example, the
condition number directly dictates the solution procedure as a
highly ill-conditioned matrix prohibits application of a direct
matrix solver like Gaussian Elimination [3], [4], and more

sophisticated techniques like singular value decomposition

may have to be introduced [5], There are various ways to

stop the increase of the condition number as the dimension of
the matrix increases. One such procedure has been outlined
by Mikhlin [4]. In [4], the basis functions are chosen in
such a way that the growth of the condition number can
be controlled. In this paper, we utilize a particular set of
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basis functions primarily tailored for rectangular regions for
an efficient solution of the resulting matrix equation. This
particular choice of the basis is related to the “wavelet”
concepts [6]–[8].

The basic philosophy of this paper then lies in the choice of
a particular set of basis functions (which of course is dependent
on the nature of the problem, e.g., TM or TE and on particular
shape of the domain) which attempts to diagonalize the system
matrix that arises when Galerkin’s method is applied to the
differential form of Maxwell’s equations. The ideal situation
will of course be to make the large sparse “Galerkin System
Matrix” diagonal. Then the solution of such a matrix (either

solution of the matrix equation due to different right hand
sides or solution of an eigenvalue problem) problem would be
trivial. However, because of various boundary conditions, this
goal cannot be achieved. Therefore, the next best procedure is
an attempt to make say 80% of the sparse system matrix [S]
diagonal. So for a 21 x 21 system matrix [S], we would have
an 18 x 18 matrix block that is diagonal, so the solution of
a 21 x 21 matrix equation is simply to reduce to inversion
to a 3 x 3 matrix [13] and two 3 x 18 and 18 x 3 matrices

as illustrated below:

[

[~]18x18 [GlTsx3
[SIQIXN= [G]3X18 [B]sxs 1

where * denotes conjugate transpose.
For obtaining the cutoff frequencies of a waveguide, one

needs to solve for the eigenvalues of a large matrix equation.
However, if the matrix is sparse and “almost” diagonal, then
an iterative technique like the conjugate gradient [9] can be

utilized to converge on the first few of the eigenvalues in a

relatively few iterations to yield the cutoff frequencies. Some
numerical examples are presented to illustrate the problem.

The main contribution of this paper is that for rectangular
regions, a suitable basis can be found which produces a system
matrix which has a large diagonal block. The size of the
block increases as the dimension of the problem increases.
Hence, the system matrix can then be subdivided into a square
matrix of relatively small dimension which is sparse, and two
sparse rectangular matrices and a large diagonal matrix. This
improves the computational efficiency of the new technique
over conventional finite element methods as tlhe condition
number of the system matrix does not increase significantly
as the dimension of the problem increases.
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II. SOLUTIONOF HELMHOLTZ’S
EQUATIONUTILIZING THE NEW BASIS

Consider the solution of Helmholtz equation

v%(x, y)+ IA(Z, y) = l’(z, ‘y). (1)

We focus our attention on the particular case, when the domain
of (1) is restricted to rectangular regions L defined by the
contour /. In this paper. we have focused our attention only
on rectangular regions, and have assumed that any arbitrary
shaped region R can be made of rectangular regions L of the
type

To solve (1) in the region (2), one multiples (1) by the function

u(x) and integrates over the region L to obtain

/ /
W(Z, ‘/J)~2U(:Z,y) dxdy + k2 ‘u,($, Y)V(Z, y) d~ dy

L L

‘! F(x, g)v(~, y) dx dy. (3)
L

After integrating by parts, the result is

/ /
- (~U)(~7L) dr dy + k2 U’Vd~ dy

.L .L

—.
/ /

Fvdxdy+ Lv:d[ (4)
L

where n is the direction of the outward normal.
Next, it is assumed that the unknown U(Z, y) can be

represented by a complete set of basis functions, which have
first-order differentiability, as

AI N 4P

4

+ ~czz(z, y) (5)

where A,l, ./?,l, and C,l are the unknowns to be solved for.
Basically. the function ~,j (.z, y) satisfy the homogeneous

boundary conditions. and N,j and T%are there to take care
of the inhomogeneous Dirichlet conditions and enforcing
continuity of the fields from one rectangular region to the next.

Specifically, for the waveguide problems involving rectan-
gular regions, the basis functions have been chosen in the
following form:

‘L(xy)=sin(+)sin(w(6)

The rationale for choosing these specific basis functions
is the fact that these functions are not only orthogonal to
themselves, but their partial derivatives are also orthogonal
in the rectangular region defined in (2), i.e.,

($4,; (h) = o for i#p; j#q (7)

and

(~oi,; Vdpq) = o for i+p; j+q (8)

(4,,; ~dp,) = o for i#p; j#q (9)

b

Y
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Fig. 1. Geometry for the 2-D basis functions

where the inner product in the two-dimensional rectangular
region R is defined by the usual Hilbert inner product

/./

b

(C; d)= adz dy C(Z, y) ~($, y) (10)
o 0

where the overbar denotes complex conjugate.
In addition, we need four edge basis functions Nij, where

N,J is zero everywhere on the boundary (i.e., on all edges)
except on edge Ei. This implies N3J is zero on edges &, 13z,
and E4 and unity on edge 133 (as in Fig. 1). Hence,

(11)

(12)

(13)

(14)

In an analogous fashion, one can illustrate that the basis
T%in (5) provide the matching conditions needed for the four
vertices VI, V2, V3, and Va as shown in Fig. 1. Specifically,
the basis associated with each vertex can be written as

T,(z, y) = (1-:)(1-;) (15)

T,(z> y) = :(1 - :) (16)

T3(z, y) = ; . ; (17)

Ti(z, y) = (1 – ;):. (18)

Substitution of (6), (11 )–( 14), (15)–(19) in (5) and then into
(4), with V(Z, y) replaced by #,J, N,j, and T, results in a
matrix equation of the form

[P][A] + /12[Q][A]= [VF] + [VB]. (19)
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TABLE I
CUTOFFWAVENUMBERSOF THETMm a MODES

TM,, TM,, TM31 TM,, TM,, TM,, TM51TMdz
&

TM,,

N=l 3.52 4.45 * “ * * * *

N.2 3.51 4.45 5.66 6.48 * * * *

N=3 3.51 4.44 5.66 6.48 7.05 7.85 * *

N.4 3.51 4.44 5.66 6.48 7.04 7.85 8.51 8.90

N=5 3.51 4.44 5.66 6.48 7.03 7.85 8.48 8.89

N=6 3.51 4.44 5.66 6.48 7.03 7.85 8.47 8.89

N=7 3.51 4.44 5.66 6.48 7.03 7.85 8.47 8.89

N=8 3.51 4.44 5.66 6.48 7.03 7.85 8.46 8.89

N.9 3.51 4.44 5.66 6,48 7.03 7.85 8,46 8.89

N.1O 3.51 4.44 5.66 6.48 7.03 7.85 8.46 8.89

EXACT 3.51 4.44 5.66 6.48 7.02 7.85 8.46 8.89

Because of a special choice of the basis functions tailored for
rectangular domains, the system matrices [F’] and [Q] have a

certain structure, namely,

~lnxn [Gl:xrn[~]; [Q] = [~qmxn [~]mxrn
1

(20)

where [D] is a diagonal matrix, [1?] is a sparse matrix, [G]
is a sparse matrix, and [G]* is its conjugate transpose. [VF]
is a vector containing the excitation terms. [VB] is a vector

containing the boundary terms. The percentage of the matrix
that is diagonal depends, first, on how many rectangular
regions the original region has been divided into and, second,

the nature of the boundary condition on the contour [.
If the original domain R has been subdivided into L

secondary rectangular regions, then the continuity of the
function u is imposed along all boundary edges, and at each

vertex through the coefficients l?ij and C;. In addition, the
continuity of the first derivative of u in the normal direction
to the L subdomain boundaries is also enforced. This condition
is imposed by making the boundary terms in the formulation
from one subdomain to its connecting neighbor equal.

Depending on the type of the boundary condition—either

Dirichlet or Neumann—the structure of the system matrices
[P] and [Q] are different. We now consider the structure of
the system matrices as a function of the boundary condition.

Case A—Dirichlet: For this case, where the original do-
main has been subdivided into L regions and the highest order
of approximation ill, N, and P in (5) has been assumed to be
the same, all N, i.e., they are considered to be the same in all
L regions for comparison purposes.

Because of the special choice of the basis in (5), the
maximum dimension of the system matrix [P] and [Q] will
be L(N2 + 4N + 4), However, if the boundary conditions are
strictly homogeneous, then the total dimension of the system
matrices [P] and [Q] will be somewhat less than L(N2 +
4N + 4). However, for the choice of the special basis, the
dimension of the diagonal submatrix [D] in (20) will be LN2.
This clearly demonstrates that as the number of unknowns N
increase, the majority of the system matrix becomes diagonal.

Fig. 2. Rectangular waveguide.

This is because the row size increase of [P] is dominated by
the term LN2, and so is the row size of the diagonal matrix
[D]. The rectangular submatrix [G] has the dimension of rows

as (N times the number of internal edges-t number of internal
comers) and the column is LN2. The square matrix [B] has a
row and column dimension of (N times the number of internal
edges + number of internal comers). Hence, the size of B goes
up as essentially O(L + 1)N. Therefore, the computational
complexity goes up as 6[{(L + 1) N}3], when the number
of unknowns go up by LN2. This amounts to a significant
decrease in the reduction of computational complexity.

Case B—Neumann: For this case, the diagonal submatrix is
the same size as that for the previous case of Dirichlet bound-
ary conditions. But now, the coefficients of all the matching
functions are unknowns. Hence, the size of the system matrix
[P] is LN2 +N* {(number of edges) + (number of comers)}.
Even though the size of the diagonal matrix is the same as
before, case B produces a system matrix P which is almost
diagonal.

Case C—Mixed: It is easy to extrapolate the results to a
mixed Dirichlet and Neumann condition. The important point
is that due to the choice of the “tailored” basis, the major
portion of the system matrix [P] and [Q] is diagonal.

Because a large portion of the system matrix is diagonal,
the growth of the condition number with the increase in the
number of unknowns can be controlled by proper scaling.
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TABLE II
PERCENTAGEOF THEMATRIXTHATIS DIAGONALFORTHETM MODES

Matrix Size of the % Diagonal
size Diagonal Block

N=l 3 2 66.7%

N=2 10 8 80%

N=3 21 18 85.7%

N=4 36 32 88.9%

I N=5 I 55 I 50 I 90.9% I

N=6 78 72 92.3%

N.7 105 98 93.3%

N.8 136 128 94.1%

N=9 171 162 94.7%

N=1O 210 200 95.2%

TABLE III
CUTOFFWAVENUMBERSOF THETE~n MODES

TEIO TE20 TEI1 TEZ, TE,O TE81 TEA, TEIZ
& &

TEO1 TEO,

N=l 1.59 * * * * * * *

N=2 1.57 3.16 3.53 4.46 * * “ *

N=3 1.57 3.15 3.53 4.46 4,75 5.70 * *

N=4 1.57 3.14 3.52 4.45 4.74 5.69 6.32 6.53

N=5 1.57 3.14 3.51 4.44 4.72 5.67 6.30 6.49

N=6 I 1.57 I 3.14 I 3.51 I 4.44 I 4.72 I 5.67 I 6.30 I 6.49 I

N=7 1.57 3.14 3.51 4.44 4.72 5.67 6.29 6,48

N.8 1.57 3.14 3.51 4.44 4.72 5.67 6.29 6.48

N=9 1.57 3.14 3.51 4.44 4.71 5.66 6.29 6,48

N=1O 1.57 3.14 3.51 4.44 4.71 5.66 6.29 6.48

EXACT 1.57 3.14 3,51 4.44 4.71 5.66 6.28 6.48

TABLE IV
PERCENTAGEOF THEMATRIXTHAT IS DIAGONAL FORTHETE MODES

Matrix Size of the % Diagonal
size Diagonal Block

N=l 15 2 13.3%

N=2 28 8 28.6%

N=3 45 18 40%

N=4 66 32 48.5%

N=5 91 50 54.9%

N=6 120 72 60%

N=7 153 98 64.0%

N=8 190 128 67.4%

N=9 231 162 70.1%

N=1O 276 200 72.5%

III. APPLICATIONTO SOME WAVEGUIDEPROBLEMS used one region (L = 1) to solve the problem and increase IV.
But to illustrate the flexibility and accuracy of the procedure,

As a first example, consider the solution of the cutoff we divide the rectangular region into two regions A(lJ 1.3x 1
frequencies of the various TE and TM modes of a rectangular and A(2) 0.6 x 1 as shown in Fig. 2. The basis chosen is the
waveguides of dimension 2 cm x 1 cm. Here we could have same as in Section II.
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TABLE V
CUTOFFWAVENUMBERSFORTHETM MODESOF AN L-SHAPED WAVEGUIDE

Mode Mode Mode Mode Mode Mode Mode
1 2 3 4 5 6 7

N=l 4.95 6.18 * * “ * *

N=2 4.92 6.15 7.00 8.63 * * *

N=3 4.91 6.14 7.00 8.58 8.94 10,2 10.6

N=4 4.90 6.14 7.00 8.57 8.92 10.2 10.6

N=5 4.90 6.14 7.00 8.56 8.91 10.1 10.6

N=6 4.90 6.14 7.00 8.56 8.91 10.1 10.6

N=7 4.89 6.14 7.00 8.56 8.90 10.1 10.6

N=8 4.89 6.14 7.00 8.56 8.90 10.1 10.6

Ref [91 4.80 6.07 6.92 8.61

Ref [12] 4.87 6.13 6.99 8.55

TABLE VI
PERCENTAGEOF THEMATRIX THAT IS DIAGONA~.FORTHETM CASE

Dimension cf Dimension of the % Diagonal
System Matrix Diagonal Block

N=l 5 32 60%

N=2 16 12 75%

N=3 33 27 81.8%

N=4 56 48 85.7%

N=5 85 75 88.2%

N=6 120 108 90%

N=7 161 147 91.3%

I N=8 I 208 I 192 I 92.3% I

Table I presents the cutoff wavenumbers of the TM~n

mode. The * indicates that the order was not sufficient to

perform reliable computation for the modes for a rectangular

waveguide with better than 1% accuracy. The exact solution

is obtained from [11]. Table II indicates the percent of the

matrix that is diagonal. The computational efficiency of the

new basis now becomes clear. For this case, 95 IZO of the matrix

is diagonal when a large number of unknowns are taken, and

as the number of unknowns increase so does the size of the

diagonal matrix! Table III presents the cutoff wavenumbers

for the TE~~ modes in a rectangular waveguide. The exact
solution is obtained from [11]. Table IV shows that as the

number of unknowns increases, so does the size of the diagonal

block maintaining the computational efficiency. For the same

value of N, the size of the matrix is different for the TE case

as opposed to the TM case because many of the boundary

terms go to zero for the TM case and not for the TE case.

As a second example, we consider an L-shaped waveguide
as shown in Fig. 3. The largest dimensions are all 1 cm. The

structure has been subdivided into three subregions, This prob-

lem has been solved using a finite difference approximation [9]

and an integral equation approach [12]. The results produced

by this new approach are accurate and convergence is very
rapid.

TABLE VII
CUTOFFWAVENUMBERSFORTHETE MODESOFAN L-SHAPEDWAVEGUIDF

Mode Mode Mode Mode Mode Mode
1 2 3 4 5 6

N=l 1.89 2.92 * * * *

N=2 1.88 2.90 4.85 5,21 5.49 6.87

N=3 1.88 2.89 4.85 5.21 5.48 6.87

N=4 1.87 2.89 4.84 5.20 5.47 6.84

N=5 1.87 2.89 4.84 5.20 5.46 6.84

N=6 1.87 2.89 4.83 5.20 5.46 6.84

N=7 1.87 2.89 4,83 5.20 5.46 6.84

N.8 1.87 2.89 4.83 5.20 5.46 6.84

N=9 1.87 2.89 4.83 5.20 5.46 6.48

Ref [91 1.88 2.95 4.89 5.26 5.49 6,91

Ref [12] 1.89 2.91 4.87 5.24

Table V provides the cutoff wavenumbers for first few
dominant TM ,modes for the L-shaped waveguidle. Table VI
shows that, as usual, as the number of unknowns increase,
so does the size of the diagonal block, Table VII provides
the cutoff wavenumbers for the first few TE modes of the L-
shaped waveguide. Again, the percentage of the matrix that is
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TABLE VIII
PERCENTAGEOF THEMATRIXTHATlSDIAGONALIZABLEFORTHETE CASE

Dimension of Dimension of the % Diagonal
System Matrix Diagonal Block

N=l 21 3 14.3%

N=2 40 12 30%

N=3 65 27 41.5%

N=4 96 48 50%

N=5 133 75 56.4%

N=6 176 108 61.4%

N=7 225 147 65.3%

N=8 280 192 68.6%

N=9 341 243 71.3%

TABLE IX
CUTOFFWAVENUMBERSOFTHETE MODESOFA VANED RECTANGULARWAVEGUIDE

Mode Mode Mode Mode Mode Mode
1 2 3 4 5 6

N=l 1,60 2.21 3.32 3.55 4.58 *

N=2 1.57 2.17 3.17 3.31 4.26 5.41

N=3 1.57 2.15 3.15 3.30 4.26 4.75

N=4 1.57 2.14 3.15 3.30 4.25 4.74
I I I 1

N=5 1.57 2.13 3.14 3.30 4.25 4.72

N=6 1.57 2.12 3.14 3.30 4.25 4.72

N=7 1.57 2.12 3.14 3.30 4.25 4.72

N=8 1.57 2.12 3.14 3.30 4.25 4.72

N=9 1.57 2.12 3.14 3.30 4.25 4.71

N=1O 1.57 2.21 3.14 3.30 4.25 4.71

Ref. [91 1.57 2.00 3.13 3.28 4.23 4.66
r I 1 1 1 1

Ref [12] 1.57 2.11 3.16 3.30

TABLE X
PERCENTAGEOF THEMATRIX THAT IS DIAGONALIZABLEFORTHETE CASE

I I
Dimension of

I
Dimension of the

I
% Diagonal

System Matrix Diagonal Block I
I N=l I 27 141 14.8% I

I N=2 I 52 I 16 I 30.8% I

I N=3 I 85 I 36 I 42.3% I

I N=4 I 126 I 64 I 50.8% I

N=5 175 100 57.1%

N.6 232 144 62.1% i

N=7 297 196 66%

N.8 370 256 69.2%

N=9 451 324 71.8%

N=1O 540 400 74.0%

diagonal increases consistently with the number of unknowns compared to that of finite difference solution technique [9]
as shown in Table VIII. and an integral equation technique [12]. Again, as the number

As a final example, consider the vaned rectangular wave- of unknowns increase, the majority of the system matrix is
guide shown in Fig. 4. Table IX provides the cutoff wavenum- diagonal as shown in Table X, and hence the computational
hers of the first few dominant TE modes. The results have been efficiency increases.
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TABLE XI
CUTOFFWAVENUMBERSOF THETM MODESOFA VANED RECTANGULARWAVEGUIDE

Mode Mode Mode Mode Mode Mode
1 2 3 4 5 6

N=l 3.74 * * * * *

N=2 3.72 5.05 6.48 * * *

N=3 3.71 5.03 6.48 6.59 7.03 7.87

N=4 3.71 5.01 6.48 6.55 7.03 7.80

N=5 3.71 5.01 6,48 6.53 7.03 7.78

N.6 3.70 5.00 6.48 6.52 7.02 7.76

N=7 3.70 5.00 6.48 6.51 7.02 7.76

N=8 3.70 4.99 6.48 6.50 7.02 7.76

N=9 3.70 4,99 6.48 6.50 7.02 7.75

N=1O 3.70 4.99 6.48 6.50 7.02 7.75

Ref. [91 3.65 4.87 6,31

TABLE XII
PERCENTAGEOF THEMATRIX THAT IS DIAGONALIZABLEFORTHETM CASE

I I
Dimension of

I
Dimension of the

I
% Diagonal

Svstem Matrix Diagonal Block I
N=l 27 10 37.0%

N=2 52 27 51.9%

N=3 85 52 61.2%

N=4 126 85 67.5%

N=5 175 126 72.0%

N=6 232 175 75.4%

N=7 297 232 78.1%

N=8 370 297 80.3%

N=9 451 370 82.0%

N=1O 540 451 83.5%

I~
1 cm . . . . . . . . . . . . . . . . . . . . . . . .

I
Fig, 3. L-shaped waveguide.

Finally, Table XI provides the cutoff wavenumbers of TM

modes of a vaned rectangular waveguide, and Table XII shows

the size of the system matrix that is diagonal.

lcml————— Ir0.5 cm

t ~J
~2cm >

Fig. 4. Vaned rectangular wa~eguide.

IV. CONCLUSION

An entire domain basis function is presented for efficient
solution of a Helmholtz equation confined to two-dimensional
rectangular regions. Since this particular choice of the basis
function transforms the majority of the system matrix into a
diagonal one, the growth of condition number can easily be

controlled by proper scaling. and the computational efficiency
can be significantly enhanced over the conventional technique.
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This principle has been applied to the cutoff wavenumbers of

certain waveguides. The rate of convergence and accuracy of
the new basis is reasonable. In addition, these basis functions
can easily be extended to 3-D rectangular regions and to
problems with dielectric inhomogeneity.
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