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The Definition and Computation of

Modal Characteristic Impedance in

Quasi-TEM Coupled Transmission Lines
G. G. Gentili, and M. Salazar-Palma, Member, IEEE

Abstract-The quasi-TEM analysis of systems of Iossless cou-
pled transmission lines in an inhomogeneous medium is reviewed.

Starting from the generalized telegrapher’s equations, the charac-

teristic impedance of the normal modes is defined and computed

according to the three usual definitions for the single-line case:

power-current, power-voltage and voltage-current. Unlike the
quasi-TEM single-line case, it is shown that the three definitions

lead in general to different modal characteristic impedance val-

ues. Theoretical results are then confirmed by some numerical
examples on two and three coupled-lines systems.

I. INTRODUCTION

QUASI-TEM propagation in systems of coupled trans-

mission lines in a inhomogeneous medium has been

the subject of a great deal of work in the microwave

and circuit area. Applications related to such structures range

from the analysis and synthesis of classical microwave devices

(directional couplers and parallel coupled resonators filters [1],

[2]) to the interaction of complex structures through coupled

transmission lines, such as high speed buses connecting logic

circuits in modern digital computers [3]–[5].

Beside classical works [6], [7], which opened the way to

rigorous time domain analysis of coupled transmission lines,

some more recent literature has brought new contributions to

the understanding of pulse propagation and distortion both

in the frame of high speed logic and of microwave field-

oriented CAD tools [5], [8]–[10], [3], [4], [1 1]. Because of the

growing speed and complexity of modern digital computers

and microwave devices, a further impulse to the study of

coupled structures in a inhornogeneous medium can be easily

foreseen.

In the context of quasi-TEM coupled structures the methods

for frequency and time-domain analysis are all based on the

concept of normal modes [6]. In short, propagation in a system

of JV coupled transmission lines (lV + 1 conductors) in an

inhomogeneous medium can be described by IV modes, which

propagate decoupled from one another and with different

speeds (in general).
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While the propagation speeds of such modes are naturally

defined and computed, being strictly related to the eigenvalues

of the wave equation for the coupled line structure, in the

literature the concept of modal characteristic impedance and

modal characteristic impedance matrix (MZC) has been the

subject of different interpretations. The MZC should not be

confused with the characteristic impedance matrix Z., which

is a full matrix associated to propagation of voltage and current

waves along the coupled lines, over which there is a general

agreement and an unambiguous definition. In [12] a full MZC

has been first introduced (say Z~), and it has been used by

several other authors, e.g. in [5], [13], [14]. In such matrix,

columns are associated to modes and rows to lines. If one

loads the lines with the impedances in column k, one gets a

perfect match for mode k.

An alternative definition can be found in the literature

(see e.g. [10]), according to which the MZC is a diagonal

matrix whose elements are the characteristic impedances of

the normal modes. This second definition is more strictly

related to the decoupled line formulation of the coupled

transmission lines problem, since each mode is associated

with a characteristic impedance in addition to the proper speed

of propagation. This second definition of MZC is dealt with

in this paper. For the sake of clarity, throughout this paper

we shall refer to such MZC (diagonal) as matrix zd. Unlike

the former MZC, in the literature matrix zd is computed

according to different schemes. It seems that the main issue

over which some disagreement appeared is the normalization

of the Vokage and current eigenvector matrix. Since matrix zd

depends on such normalizations, some interesting questions

arise quite naturally:

● What is the physical meaning of the different possible

normalizations of the current and voltage eigenvector

matrices when computing matrix zd ?

“ Is there a unique definition of matrix Zd ?

Because of its arbitrariness in a circuit description of the

coupled-lines system, in general it has been paid little attention

to the problem of normalization. In [6], [10], [15]–[17] a

normalization is assumed, but not justified; in [3] matrix zd

is identified with the diagonal matrix of eigenvalues of matrix

ZC; in [18] the eigenvalues of the capacitance p.u.l. matrix are

used as modal capacitances p.u.l. (from them one can derive

the modal characterist impedances); in [4] an almost diagonal

matrix is introduced and the off diagonal elements are then

neglected to form a diagonal matrix.
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A quite important issue in this context is the relationship

between the current eigenvector matrix Mi and the voltage

eigenvector matrix MU. As pointed out in [2], in general, a

normalization for which Mz = MU does not exist. This fact

was observed and emphasized also in [19] and [20]. On the

other hand, since Mi and Mu are generated independently (by

two related, but different, eigenvalue problems), one actually

finds 21V degrees of freedom (IV being the size of either

matrix).

The purpose of this paper is to give a contribution to the

understanding of the different possible normalizations of the

current and voltage eigenvector matrices, their implications on

matrix zd and their physical meaning. The topics of definition

and computation of matrix zd and its relationship with matrix

ZC are thus dealt with in detail. The main results of this work

is the observation (and demonstration) that the numerical value

of matrix zd is dependent on the definition. The three classical

cases mutuated from hybrid-mode analysis are analyzed: the

power-current definition, the power-voltage definition and the

current-voltage definition. These three different definitions,

although applied to a quasi-TEM structure, lead in general

to three different values of modal characteristic impedance

matrix. Thus, there exist a set of normalizations with a well

defined physical meaning.

The work assumes quasi-TEM propagation in lossless, cou-

pled transmission lines in a linear, isotropic, inhomogeneous

medium and is organized as follows: after a section which

summarizes the main results on the subject, the normalization

problem is treated in sections III-IV-V. Section VI is a col-

lection of some numerical examples on two and three coupled

microstrip structures in order to provide further evidence to

the theoretical results obtained in sections III-IV-V. Although

the very important problem of lossy lines is not treated,

this contribution should help understand the physical nature

of normal modes in quasi-TEM coupled lines and, possibly,

answer to the questions raised in this introduction.

II. A RECALL ON THEORY

Our starting point are the well-known time-harmonic gen-

eralized telegrapher’s equations [7]:

av’

&
— = –jwLi’

di’

az
— = –jwcv’.

(1)

(2)

where L and C are respectively the N x N inductance and

capacitance matrices p.u.l. of the system of N conductors

and v’, i’ are respectively the voltages and currents along the

coupled lines organized as column vectors. With the structures

assumed in this work, L and C are symmetric positive definite
matrices (for a discussion on the properties of such matrices

see [21]). Matrix L is related to matrix C. (the capacitance

matrix obtained when all dielectrics are removed) by the well

known relationship [6]

LC. = PCI@ (3)

where I is the identity matrix. By suppressing time dependence

(e~mt) and looking for solutions vvhose z-dependence is of the

type

v’(z) = ve-~pz (4)

i’(z) = ie-~pz (5)

one finds by substitution the following eigenvalue problems:

1

Fv = lJCV
(6)

1

Pi= cLi”
(7)

where c is the speed of propagation (unknown). Let now At

be the eigenvalues of matrices LC and CL, then

A = [,~~] (8)

and finally let the eigenvectors of matrices LC and CL be

organized as columns of matrices MO and Mi respectively.

At present no specification is made about their normalization.

By inserting M, into (1) one finds the matrix ~. of

voltages associated to the eigenvoctor matrix Mi. It is found as

Mv = LMIA-l (9)

Similarly, by inserting M. into (2) one finds the matrix ~,

of currents associated to the eigenvector matrix M.:

~; = CMVA-l. (lo)

It can be shown that

~, = MVDU (11)

and

~i = MiD, (12)

where D. and Di are diagonal matrices. Since matrices

M“ and Ml are actually specified with an undetermined

right-multiplying diagonal matrix, (1 1), (12) simply state that

by exciting the lines with a voltage eigenvector, a current

eigenvector results, and vice-versa. It also means that matrices

Ld = M~;lLMi (13)

and

Cd = M~-lCM,, (14)

are diagonal. They can define modal inductance and capac-

itance p.u.l., providing some criterion for normalization is

defined.
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III. THE DEFINITION OF MODAL

CHARACTERISTIC IMPEDANCE MATRIX

The diagonal matrices Ld and Cd have been usually in-

terpreted as modal inductance and capacitance p. u. 1.. It is

then natural to introduce the concept of modal characteristic

impedance matrix Zd, which is related to modal inductance

and capacitance [10]. Matrix Zd, together with the set of

eigenvalues ~k, leads to the well knwon decoupled formulation

of the coupled transmission lines problem. However, because

of the arbitrarily in the definition of both Mu and Mi, matrices

Ld, cd and zd are actually undefined.

In a circuit description of the system of lossless coupled

transmission lines, the normalization can be chosen arbitrw-

ily, since any normalization adopted is then recovered when

one goes back from the modal waves to the line waves

description. However, the normalization of the voltage and

current eigenvectors can be shown to be related to the physical

meaning of matrix Zd and establishes a link between the

general ~-line case, the single-line case and the case of two

symmetrical coupled lines, where the even-mode and odd-

mode characteristic impedances are unambiguously defined

and computed by all authors.

In the following sections it is shown that in the general case,

matrix zd takes on values which depend on the definition. The

three usual cases are considered: power-current, power-voltage

and voltage-current. According to the definition one adopts,

different values of modal characteristic impedance are found.

This is first demonstrated and then verified by applying the

three definitions to some two and three-line systems.

A. The Voltage-Current (VI) Case

In this case, the characteristic impedance of each mode takes

on a meaning analogous to the ratio V/I for the single-line

case. This is the definition of modal characteristic impedance

adopted in the literature [10]. The expression is

z’(”) = (M-lC-lMiM~lLMJ)li2
d w (15)

which is dependent on the normalization of both Mi and

MU. For the purpose of this work, we consider matrices Mi

and MU normalized according to (18), (24). The associated

inductance and capacitance matrices p.u.l. L&’) and C$”) are

then defined by (13) and (14).

B, The Power-Current (PI) Case

In the PI case, the characteristic impedance Z:’) of each

mode assumes the following meaning:

(16)

where the subscript k indicates the mode and the superscript

‘T’ indicates transposition. This definition is naturally ex-

tended from the single-line case, the difference being that

i is actually a vector in a lV-dimensional euclidean space.

According to this definition, the MZC is related to power by

a measure of the total current associated to the mode.

By indicating with ~ the k-th column of matrix ~U and

with m~ the k-th column of M, one finds

Z(PI) _ @G)T(%)*
k—

(rn~)T(rn;)*
(17)

which is independent of the normalization of matrix Mi (ma-

trix M. does not appear). However, by normalizing Mi so

that

(m~)~(m~)” = 1 k=l,2... iv (18)

the diagonal matrix of PI modal characteristic impedances

Z(”) takes on the following form:d
Z(PI) – A-lM;LM;

d— (19)

where we have used (9), and the associated inductance and

capacitance matrices are

L(Pr) = AZ$I)
d (20)

($1) = A(Z$l))-l (21)

The Power-Voltage (PV) Case

A second possible definition relates the characteristic

““) of each mode to power throughimpedance Zh

In this case

(@JT(m[)*
(zfv))-l = (m;)T(m~)*

(22)

(23)

which is independent of the normalization of matrix NIu

(matrix Mi does not appear). If matrix M., is normalized

so that

(mji)T(m~)* = 1 k=l,2... N (24)

the diagonal matrix of PV modal characteristic impedances

takes on the form

#’) = (A-lM;CM:)-l
d (25)

having used (10), and the inductance and capacitance matrices

p.u.l. are derived according to (20), (21).

IV. COMPARISON BETWEEN THE THREE DEFINITIONS

It is shown in this section that the three formulations

lead to different values of modal impedances, In order to

make such comparison we first normalize matrices M, and

Mu so that (18), (24) hold. This is done in order to use

the matrix expression for mode impedance. Note that any

normalization can be used, since matrices z~r) and Zyv) are

normalization independent. The three results obtained with the

three definitions are repeated here for convenience:

Z(P1) = A-lM~LMz>
k (26)

(27)Z$v) = (A–lM;CMU)-l,

Z(v’) = (M;l C-lMiM; lLMJ1/2.
d (28)
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and the asterisk has been dropped since matrices Ml and MV

can be chosen real [7]. Note also that because of Z~~)’(pv)

being diagonal, matrix A-l can be moved to the right.

By inspection on the three formulas above, one can easily

find that the three definitions lead to the same diagonal matrix

of modal characteristic impedance only if

M:MV = I (29)

where I is the identity matrix. It is pointed out that the term

in the left side in (29) is always a diagonal matrix, but since

the two matrices M, and Mu are completely specified (their

normalization has been defined), (29) is in effect a further

condition on the normalized eigenvector matrices. Bacause of

Cauchy’s inequality (the equal sign applies), (29) together with

(18), (24) implies

M, = M,,D (30)

D being a diagonal matrix. By substituting (30) into (29),

because of (24) one gets that (30) implies

MfMu = I (31)

i.e. matrix Mu must be orthogonal. This is the condition which

must be fulfilled if the three definitions of modal impedance

are to coincide. The implication of the orthogonality of matrix

M. (and therefore Mi), is here reported for clarity, but it can

be found in [19]. By substituting (31) in (6), (7), one finds:

LC = (LC)T (32)

which can be written as

LC = CL. (33)

We have thus established that the condition for which the

three definitions of modal characteristic impedance coincide is

equivalent to say that matrices L and C commute. This is the

case, for instance, when one analyzes two symmetrical lines

in an inhomogenous medium, but, in general, (33) is not valid,

and the three definitions lead to three different matrices Zd.

The condition established by (33) is a rather strong one. If

it is verified, the eigenvalues of matrices L and C and the

eigenvectors M of either of them are sufficient to describe the

problem since matrices MT CM, MTLM, MTLCM and

MTCLM are all diagonal, and the eigenvalues of both LC

and CL are the product of the eigenvalues of L and C.

V. THE CHARACTERISTIC IMPEDANCE MATRIX

In the literature, many authors introduce the characteristic

impedance matrix ZC. It is usually defined through

~o = Z.M; (34)

and is thus a full matrix linking in some way traveling

voltages and currents along the coupled line system [8]. By

substituting (9) in (34) one finds

ZC = LM, A-lM;l. (35)

An alternative, but equivalent, way to compute Z. is found by

exciting the lines with M.,, i.e.

~Z = (ZC)-lMV (36)

to find

Z, = MvAIVl~lC-l. (37)

It can be shown that the two expression lead to the same

matrix ZC.

Matrix ZC is normalization independent. Thus, one can

apply (18), (24) and easily verify that the following equations

hold:

Z$l) = ~’~ZCM, (38)

Z~v) = M;] ZC(M;)-l (39)

Z~l) = M;l ZCM,. (40)

The three previous equations have the following meaning:

there are three possible diagonalizations of matrix Z., and ei-

ther of them can be used as a definition of modal characteristic

impedance. However, they have a specific physical meaning,

which has been clearly shown in the previous sections. The

basis for diagonalization are obtained from the two eigenvalue

problems relative to matrices LC and CL through suitable

normalization.

Equations (38)–(40) can be easily manipulated to express

the mode impedances in a different and interesting way: by

using (35) to express Z, and (14) one finds

z(F’1) = MTMUAC~l
d % (41)

while by using (37) and a few manipulations

Z~v) = AC~l(MfMV)-l (42)

and finally

z!”) = (%l!l)@))l’2. (43)

Thus, by using the VI definition one finds the geometrical

mean between the value found with the PI and that found with

the PV definitions, in strict analogy with the single-line case.

Note that matrix Z$”) can be generated according to (43) by

two normalization-independent matrices. Equations (41), (42)

also enlight the key role of the diagonal matrix M~Mu in

the computation of modal impedances (it is recalled that we

always deal with normalized matrices). It acts as a switch to

the desired definition of modal impedance. R also yields a
measure of the difference between the values found according

to the three definitions, depending on how different matrix

M~MO is from the identity matrix. This last information is

then separated for each mode, which means that a “ 1“ in

position k of M~MV indicates that the three definitions lead

to the same value of modal impedance for mode k.
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Fig. 1. Physical parameters of a two and three-line system.

c/co=
[

54.604 –6.634 1[ 0.13059 0.04963

–6.634 22.7014 ‘/po= 0.04963 0.2846 1
[

~ = 0.74065 –0.2762 1[ 0.9611 –0.67189

“ 0.67189 0.9611 ‘z= 0.2762 0.74065 1

Fig. 2. Matrices relative to two unsymmetrical coupled microstrips.

wl/t = 0.4, w2/1 = 0.1, s/t = 0.02, h/1 = 0.1, hs/1 = 0.4, ●l = 10eO,

CZ = co (see Fig. 1).

VI. REzuL~s

Some numerical simulations have been performed to test the

various definitions of modal characteristic impedance. At first

a pair of shielded coupled microstrip lines of different widths

have been analyzed. Such lines support a n-mode (voltages

of the same sign) and a c-mode (voltages of opposite sign)

[1]. The partial results on the matrices defined in the paper are

shown in Fig. 2 (the physi cal parameters are defined in Fig. 1).

The results on modal characteristic impedance using the

three definitions above introduced are given in Table I. Note

that there is a considerable difference in the three values for

each mode. As pointed out in the previous section, the VI

definition leads to values which are the geometrical mean

between the other two, while the PI definition leads to the

lowest values for each mode and the PV definition to the

highest.

A second example is shown in Table II. In this case a

structure composed of 3 symmetrical coupled microstrips has

been analyzed. It is interesting to observe that although the
structure is symmetrical the three definitions of zd lead to

slighlty different results. There is however one mode for

which the three definiticms coincide (mode 2). The mode

eigenvector is the following: 0.707, 0, –0.707. Thus the

mode is completely antisymmetrical and has equal voltages

(in magnitude) on the two outer lines. No difference results

in its modal impedance from the application of the three

definitions. A ‘ 1‘ appears in the corresponding position of in

matrix M~MV. This is a,stually the odd mode of the pair of

external lines when the center line is connected to ground.

Since such system of two lines is symmetrical, no difference

results from the application of the three definitions.

TABLE I

CHARACTERISTICIMPEDANCE (Q) FORA STRUCTUREOF Two

CODPLEDMICROSTRIPS. wl/1 = 0.4, w2/1 = 0.1, s/t = 0.02,

h/1 = 0.1, h,/1 = 0.4, cl = 10co, 62 = eO (SEE FIG. 1).

c-mode r-mode

P-I 25.70 23.95

V-I 28.64 26.69
P-v 31.91 29.74

TABLE II

CHARACTERISTICIMPEDANCE (Q) FORA STRUCTUREOF THREE COUPI.ED
MICROSTRIPS: wI/1 = 0.1, w2/1 = 0.1, w3/t = 0.1, s1/1 = 0.02,

s2/1 = 0.02, h/t = 0.1, h./l = 0.3, Cl = 106., e2 = Co (SEB
FIG. 1). THESIGNSOFTHEVOLTAGEEIGENVECTORSAm SHOWN

mode 1 mode 2 mode 3

+–+ +o– +++_
P-I 26.65 40.01 67.17
V-I 26,69 40.01 67.27
P-v 26.73 40.01 67.37

TABLE 111

CHARACTERISTICIMPEDANCE (Q) FORA STRUCTUREOF THREE COUPLED

MICROSTRIPS. wI/1 = 0.2, wz/1 = 0.05, w3/1 = 0.02, sl/1 = 0.01,

s2/1 = 0.01, h/1 = 0.1, h./l = 0.3, Cl = 10cO, Cz = Co (SEE
FIG. 1). THE SIGNSOF THE VOLTAGE EIGENVECTORSAm SHOWN

mode 1 mode 2 mode 3

+–+ +–– +++_
P-I 30.54 40.13 47.16
V-I 31.78 50.20 57.48

P-v 33.07 62.79 70,05

In Table III a third example is shown. In this case a strongly

asymmetrical structure composed of three coupled microstrip

lines has been analyzed. The difference in the values of the

PI, PV and VI modal characteristic impedances is very strong.

The mode patterns (signs) of the voltage eigenvectors are also

shown in the table.

The different values of characteristic impedance in general

structures can be justified from a rather intuitive point of view.

One should bear in mind that modal characteristic impedance

is related to a mode propagating along the coupled lines. Each

mode has an associated voltage pattern and current pattern,

thus, although power is well defined, voltage and current

are actually functions of position on the transmission line

cross-section (the transmission line associated to each mode

comprises all lines). Thus if one introduces some measure of

such functions, in order to define characteristic impedance,

it is not surprising to observe a dependence on the measure

of function “v” and function “z.” Actually, the same value of

characteristic impedance is found only when the two functions

are the same (Mi = M.). This happens, for instance, in

two symmetrical coupled lines. The even and odd mode

current and voltage patterns are respectively symmetrical and

antisymmetrical and the voltage and current measures can be

defined simply by taking the voltage and current along either

of the lines.

A further point concerns full-wave analysis of multicon-

ductor lines. It is well known that the PI and PV definitions

of modal characteristic impedance are commonly used in

the hybrid-mode analysis of single and coupled transmission

lines structures. When comparing the results obtained by the
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hybrid-mode analysis at low frequencies with the “static” case

(quasi-TEM) one should use congruent definitions in both

cases.

As a final comment it is pointed out that in all the tables

shown, the values of matrices C and L (actually Ca) were

computed by a numerical method [23], and they are affected

by the number of basis functions used to discretize the

charge density on the strips. The numbers shown are thus

approximations to the exact values. The number of basis

functions used in the computations is believed to yield about

three-digits accuracy.

VII. CONCLUSIONS

The problem of defining and computing modal characteristic

impedance in coupled quasi-TEM transmission lines in a

inhomogenous medium has been comprehensively dealt with.

It is found that the three usual definitions of character-

istic impedance (power-current, power-voltage and voltage-

current), although they are applied to a quasi-TEM structure,

lead in general to different values of modal characteristic

impedances. An exception to this occurs when matrices L and

C commute. In that case the three definitions lead to the same

values of modal characteristic impedances.

The theoretical results have been then confirmed by some

numerical examples on systems of two and three coupled

transmission lines.
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